This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713597274

Simulation of Degradation Processes. III. Testing of Some Relations for Random Chain Scission

Jirí Maláća ${ }^{a}$
${ }^{a}$ Research Institute of Rubber and Plastics Technology, Czechoslovakia

To cite this Article Maláĉ, Jiří(1973) 'Simulation of Degradation Processes. III. Testing of Some Relations for Random Chain Scission', Journal of Macromolecular Science, Part A, 7: 4, 923-959
To link to this Article: DOI: 10.1080/00222337308061181
URL: http://dx.doi.org/10.1080/00222337308061181

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Simulation of Degradation Processes. 111. Testing of Some Relations for Random Chain Scission

JIRI MALAC̆C
Research Institute of Rubber and Plastics Technology Gottwaldov-Louky, Czechoslovahia

Abstract

By means of the Monte Cario method a course of random chain scission was simulated and the following were determined: the number-average moiecular weight and the degree of polymerization of the system. the weightaverage moiecular weight and the degree of polymerization of the system. the number of molecules of degree of polymenzation higher than an arbitrarily chosen value, and the number of molecules of a given degree of polymerization. Values obtained by simulation were compared with some analytical relations. Some hitherto unknown characteristics of the whole process have been established.

INTRODUCTION

In a previcus paper [1 j a simple model was described which used the Nonte Carlo method for simulation of changes in molecular weights of polymers. The distriburion in tabular form was worked out on four assumptions:

1. The probability of scission of a molecule of degree of polymerization n_{i} is equal to its weight iraction.

$$
923
$$

Copyrignt 31973 by Marcei Dexher, Inc. Ali Rights Reserved. veitner this work nor any part mav be reproduced or transmutted is ant iorm or oy any means. electronic or mechanteal, including photocopying microfilming. and resording or oy any information storage and retrieval system. withou: permission in writing ftom the publisier.
2. The elementary steps move in the system at a constant velocity (one elementary step is a scission of one molecule).
3. The process is completely random.
4. The system is closed.

Depolymerization in the simuitaneous formation of monomer was not considered.

It follows from Assumption 2 that the time of degradation is directly related to the number of calculated cycles. From Assumptions 1 and 3 it follows that the probability of scission of a molecule of polymerization degree n_{i} is $p_{i}=N_{i} n_{i} \quad \Sigma N_{i} n_{i}$, where N_{i} is the number of molecules of degree of polymerization n_{i}. The course of one calculation cycle performed by computer is apparent from the simplified scheme in Fig. 1.

FIG. 1. Simplified calculation scheme.

From our model the following vere derived:

1. The dependence on time of the number of molecules N_{i} of degree of polymerization n_{i}

$$
\begin{equation*}
d N_{i^{\prime}} d t=-\mathrm{k}^{\prime} v p_{\mathrm{i}} \tag{1}
\end{equation*}
$$

where k is a constant and v is the velocity of the elementary steps.
Equation (1) was integrated in the limits 0 to t on the assumption that the starting molecular weight distribution is sufficiently narrow,
$p_{i}=N_{i} n_{i} \sum_{i} n_{i}, v$ is constant, and $k^{\prime}=k \sum N_{i} n_{i}$. The result was an equation for a first-order reaction:

$$
\begin{equation*}
\lambda_{i t}=N_{i 0} \exp \left(-k \operatorname{n} n_{i} t\right) \tag{2}
\end{equation*}
$$

2. For

$$
\begin{equation*}
1 \bar{n}_{n t}-1 ; \bar{n}_{n 0}=K t \tag{3}
\end{equation*}
$$

where $\bar{n}_{n t}$ and $\bar{n}_{n 0}$ are the number-average degree of polymerization of the system at times 0 and t, respectively, and K is a constant, and with the assumption that

$$
\begin{equation*}
\Sigma N_{i t}=\Sigma N_{i 0}+v t \tag{4}
\end{equation*}
$$

it was derived that

$$
\begin{equation*}
K=v \Sigma N_{i} n_{i} \tag{E}
\end{equation*}
$$

and the average scission veiocity of the chains of the whole molecular set at any given time is equal to

$$
\begin{equation*}
\bar{v}=\overline{K n}_{n} \tag{6}
\end{equation*}
$$

The aim of this paper was to test some quantities which are expressed analytically and which are important for the characterization of a polymer in the course of random chain scission by applying the results obtained by the Monte Carlo method and to find some mutual relations.

RESULTS AND DISCUSSION

To test the analytical relations by the application of results obrained by the Monte Carlo method, we shall assume that time
is numerically equal to the number of cycles calculated by computer.

The Dependence oi the Number-Average Dolvmenization Degree of the System \bar{n}_{n} and the NumberAverage Molecular Weight in on Time

It is known that $\overline{X I}_{n}=M \bar{n}_{n}$, where M is the molecular weight of a monomer unit. The determination of the dependence of \bar{n}_{n} on cime therefore also determines the dependence of $\overline{\mathrm{M}}_{\mathrm{n}}$.

The value of the number-average polymerization degree \bar{n}_{n} in time t is equal to

$$
\begin{equation*}
\bar{n}_{n t}=\Sigma N_{i} n_{i^{\prime}} \Sigma N_{i t}=\bar{n}_{n 0} \Sigma N_{i 0^{\prime}} \Sigma N_{i t} \tag{7}
\end{equation*}
$$

where $\Sigma N_{i t}$ and $\Sigma N_{i 0}$ are the numbers of molecules in the system in time t and in time $t=0$, respectively.

Substituting for $\mathrm{IN}_{\text {it }}$ from Eq. (4):

$$
\begin{equation*}
\bar{n}_{n t}=\bar{n}_{n 0^{\prime}}\left(1+v t, \Sigma_{i O}\right) \tag{8}
\end{equation*}
$$

The value of the elementary steps velocity v can be evaluated s=om Eqs. (3) and (5). Equations (7) and (8) are identical with the equations derived in Rei. 2 for the case oi random cross-liniting without cyclization.

Comparison with Results Obtained by the Monte Carlo Method

The dependence oi $!\vec{n}_{n t}-1, \bar{n}_{n 0}$ on the number of calculated cycles given by computer ior the simulated case is plotted in Fig. 2. For the simulated case, the value of the constant K in Eq. (3) is equal to (dechiced trom the sraph in Fig. 2): $K=3.65 \times 10^{-3}$. It follows from Eq. (5) that $v=K \Sigma N_{i} n_{i}$. For the simulated case,

FIG. 2. Dependence of the difference $1_{/} \bar{n}_{n t}-1 / \bar{n}_{n 0}$ on the number of cycles.
$S_{i} n_{i}=27,404.350$, thus $r=1,0002588 \doteq 1$, which is in agreement with the assumption that at one calculated cycle on the computer one new molecule is formed as a result of scission of one randomly selected molecule into two parts.

For the simulated case it is thus possible to write Eq. (7) in the form

$$
\begin{equation*}
\bar{n}_{n t}=S N_{i} n_{i} \cdot\left(\Sigma N_{i 0}-t\right) \tag{Э}
\end{equation*}
$$

where t is the number of computed cycles. The dependence of the number-average polrmerization degree \bar{n}_{n} on the number of computed cycles is shown in Fig. 3 for the simulated case.

The Deperdence of the Weight-Average Polymerization Degree of the system $\bar{n} w$ anc the WeightAverage Molecular Weight of Sysiem $\overline{\mathrm{II}}$ w on Time

Since $\overline{\mathrm{M}}_{\mathrm{w}}=\mathrm{Mn}_{\mathrm{w}}$, we shall examine only the dependence of \bar{n}_{w} on time, where $\bar{n}_{w}=E N_{i} n_{i}{ }^{2} \sum_{i} n_{i}$. For a closed system $\sum_{i} n_{i}$ is

FIG. 3. Dependence of the number-average polymerization degree \bar{n}_{n} on the number of calculation cycles.
constant, so that only the term $\sum N_{i} n_{i}{ }^{2}$ varies with time. By selecting at random a molecule with a polymerization degree $n_{x}=n_{1}-n_{2}$ and splitting it at random into two molecules of polymerization degrees n_{1} and n_{2}, the value oi $\Sigma N_{i} n_{i}{ }^{2}$ will decrease:

$$
\begin{aligned}
& \left(\Sigma N_{i} n_{i}^{2}\right)_{t+\Delta t}=\left(\sum N_{i} n_{i}^{2}\right) t-\left(n_{i}-n_{2}\right)^{2}-\left(n_{1}^{2}-n_{2}^{2}\right) \\
& \Delta \Sigma N_{i} n_{i}^{2}=-2 n_{i n}
\end{aligned}
$$

where Δt is the time needed Eor a scission oi one zandomly selected molecule.

It follows that

$$
\begin{equation*}
\overline{d r}_{w}=-\left\langle 2 v v_{i} n_{i} n_{1} n_{2} d t\right. \tag{10}
\end{equation*}
$$

When describing the mechod of chain scission simulation in Rer. 1 and in Ref. 3, it was stated char for a randomly selected molecule oi degree of poiymerization $n^{\prime} x^{\text {, }}$, we should use a random number p from the population equidistributed in the range 0 to 1 and by its
use we should create the fragments $n_{1}=\rho n_{x}$ and $n_{2}=(1-\rho) n_{x}$. The product $n_{1} n_{z}$ shall then be equal to

$$
n_{1} n_{2}=\rho(1-\rho) n_{x}^{2}
$$

According to the mean value theorem, the mean value of the product $\rho(1-\rho)$ in the region ($\rho, p)$ is equal to

$$
\frac{1}{\rho-\rho_{0}} \int_{\rho_{0}}^{\rho} \rho(1-\rho) \mathrm{d} \rho
$$

which for the interval (0,1) gives the value 1,6 . Equation (10) can thus be expressed in the form

$$
\begin{equation*}
\bar{d} \bar{n}_{w}=-\left(v / 3 \Sigma N_{i} n_{i}\right) n_{x}^{2} d t \tag{11}
\end{equation*}
$$

In order to integrate En. (11), we must substitute for n_{x}. Case 1

Let us suppose that $n_{x}=\bar{n}_{w}$. Then

$$
\begin{equation*}
\dot{d \bar{n}_{w}}=-\left(v / 3 I N_{i} n_{i} \bar{n}_{w}^{2} d t\right. \tag{12}
\end{equation*}
$$

Integrating in the limits 0 to t, we obtain

$$
\begin{equation*}
1, \bar{n}_{w t}-1, \bar{n}_{w 0}=v t, 3 E N_{i} n_{i} \tag{13}
\end{equation*}
$$

Comparison with Results Obtained by the Monte Carlo Method

The dependence of $\overline{\mathrm{n}}_{\mathrm{w}}$ on the number of computed cycles is apparent in Fig. 4 for the simulated case. For the simulated case we found from the graph in Fig. 2 the ralue $K=v_{i} E N_{i} n_{i}=3.65 \times 10^{-8}$, which makes it possible to evaluate the right-hand side of Eq. (i3).

FIG. 4. Dependence of the weight-average polymerization degree \bar{n}_{w} on the number of calculation cycles.

The dependence of $1, \bar{n}_{; i t}-1, \bar{n}_{w 0}$ for values of \bar{n}_{w} calculated by the Monte Carlo method and the dependence of vt, $3 \Sigma \mathrm{~N}_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}$ on the number of cycles siven by the computer is plotied for the simulared case in Fig. 5. This figure shows poor agreement between the values obrained by the Monte Carlo method and Eq. (13). For the dependence of \bar{n}_{w} on time during cross-linking without cyclization

FIG. 5. Dependence of the difference $1 / \vec{n}_{w t}-1, \vec{n}_{w 0}$ and dependence of vt. $3 \sum_{N_{i}} n_{i}$ on the number of calculation cycles.
we have shown in Rei. 2 that, in order to gec better agreement with the results obtainad by the hionte Carlo method, it is necessary to also express in the equation the change in the total number of molecules present in the system.

Case 2
Let us suppose the dependence is in the form

$$
n_{x}^{2}=\bar{n}_{W}^{2}\left(S N_{i C} S_{i t}^{\prime n}\right.
$$

By substituting in EG. (11) and integrating in the limits 0 to t, we obtain

$$
\begin{equation*}
\frac{1}{\bar{n}_{w t}}-\frac{1}{\bar{n}_{w 0}}=\frac{1}{\hat{3 n}_{n 0} 1-n!}\left[\left(\frac{\bar{n}_{n t}}{\bar{n}_{n 0}}\right)^{n-1}-1\right] \tag{14}
\end{equation*}
$$

Comparison with results obtained for the simulated case of the Monte Carlo method shows that for Eq. (14) the most convenient value is $n=-2$, 3. Substituting this value for n in Eq. (14), we obtain

$$
\begin{equation*}
\frac{1}{\bar{n}_{w t}}-\frac{1}{\bar{n}_{w 0}}=\frac{1}{\bar{亏}_{n 0}}\left[\left(\frac{\bar{n}_{n t}}{\overline{\bar{n}}_{n 0}}\right)^{-5 / 3}-1\right] \tag{15}
\end{equation*}
$$

The difference $1 \bar{n}_{w t}-1 \bar{r}_{w 0}$ for values calculated by the Monte Carlo method and the values of the risht-hand side of Eq. (15) are plocted for the simulated case in relarion to the number of cycles in Fig. 6.

For cross-linkirg it was shown [2] that for the simulated case it is possibie to obtain excellent agreement between the equation and the results obtained by the Monte Carlo method $i f$ we assume that

$$
n_{1} r_{2}=\bar{n}_{w}^{2}\left(S N_{i 0} \sum_{\mathrm{it}^{3}}^{3 / 2}\right.
$$

Poorer agreement of Eq. 15 ; with the results obrained by the Monte Carlo method icr chain scission, which can be noted in

FIG. 6. Values of the difference $1, \bar{n}_{w t}-1, \bar{n}_{w 0}(=)$ and values of the right-hand side of Eq. (15) (•) and dependence on the number of calculation cycles.

Fig. 6, is probably caused by $o(1-0)$. The validity of Eq. (15) and the influence of $\rho(1-\rho)$ will be necessary to test for other forms of the distribution curve and for other values of $\Sigma \mathrm{N}_{\mathrm{i} O}$.

Number of Molecules of Polymerization Degree Higher Than the Randomly Chosen Value nif Relationto Time

At random scission of polymers the degradation can be accompanied by dissolution of a part of the material with the lowest molecular weight. This case was studied by Mejzler [4] ior two formerly published models of random degradation [5, j]. Both of these models are limited oy the condition of the starting molecular weight of the polvmer and are, therefore, not general enough. We shall attempt to find relations valid ior any Sorm of distribution curve.

If we select with probability $p_{x}=-V_{x} n_{x} \quad \sum N_{i} n_{i}$ a molecule of degree of polymerization $n_{x}=n_{1}-n_{z}$ and split it at random into two molecules of polymerization degree n_{1} and n_{2}, ther, for an arbitrarily
chosen degree of polymerization $n_{X}>n_{i}$, three different cases may arise:
$\begin{array}{ll}\text { Case 1: } & n_{i}<n_{i} \\ \text { Case 2: } & n_{2}<n_{i} \\ & n_{1}<n_{i} \\ \text { Case 3: } & n_{2}>n_{i} \\ & n_{1}>n_{i} \\ & n_{2}>n_{i}\end{array}$
Note: The case n_{1} or $n_{2}=n_{i}$ shall be dealt with in the following section.

Case 1

The result is a decrease in the number of molecules larger than n_{i}. This can happen only if n_{X} is irom the interval $n_{i}<n_{x}<2 n_{i}$, The probability that from the rancom scission of one moiecule of degree of polymerization n_{x} from the range $n_{i}<n_{x}<2 n_{i}$, two molecules of desree of polymerization lower than r_{i} are formed is equal to

$$
p_{1}=\left(2 n_{i}=n_{x}\right) / n_{x}
$$

The probability that any molecule of degree of polymerization n_{x} from the interval $n_{i}<n_{x}<2 n_{i}$ will be randomly selected and by random scission two molecules are formed of desree of polymerization lower than n_{i}, will be the sum p_{x} pifrom $n_{X}=n_{i}$ up to $2 n_{i}$. We can thus write for the number of molecules from interval n_{i} to $2 n_{i}$:

$$
\left(\sum_{n_{x}=n_{i}}^{2 n_{i}}\right)_{t-\Delta t}-\left(\sum_{n_{x}=n_{i}}^{2 n_{i}}\right)_{t}=-\sum_{n_{x}=n_{i}}^{2 n_{i}} \frac{N_{x}\left(2 n_{i}-n_{x}\right)}{\sum N_{i} n_{i}}
$$

where Δt is the time needed zor a scission of one molecule in the system. Then

$$
\begin{equation*}
\sum_{n_{x}=n_{i}}^{2 n_{i}}=K\left(\sum_{n_{x}=n_{i}}^{2 n_{i}} N_{x}^{n_{x}}-2 n_{i} \sum_{n_{x}=n_{i}}^{2 n_{i}} v_{x}\right) \ni t \tag{16}
\end{equation*}
$$

where K is a constant from Eq. (3).
Both terms of the rignt-hand side of Ec. (13) are not only decreasing as a result of the transier of molecules into the area below n_{i}, but they can even increase by the scission of molecules of degree of polymerization higher than $2 n_{i}$ as a consequence of Case 2 or 3 .

Case 2

In this case the total number of molecules larger than n_{i} is not influenced. Their dislocation in the range above n_{i} is altered, however, and the total mass of molecules of degree of polymerization higher than n_{i} is decreasing. The probability that by random scission of a molecule of degree of polymerization from the range $n_{i}<n_{x}<2 n_{i}$, one molecule will be formed of degree of polymerization lower and another molecule of degree of polymerization higher than n_{i} is

$$
p_{2}=2 n_{x}-n_{i} i / n_{x}
$$

The probability that of random scission of a molecule of degree oi polymerization $n_{x}>2 n_{i}$. one molecule will be cormed of polymarization degree higher and anocher of polymerization degree lower than n_{i} is

$$
\underline{0}_{3}=2 n_{i^{\prime}} n_{x}
$$

By scission of a molecule of degree of polymerization $n_{x}>2 n_{i}$ a molecule of degree of poiymerization $n_{i}<n_{i}$ can be formed and, at the same time, a molecule of polymerization degree n_{2} from the range $\left\langle n_{i}, 2 n_{i}\right\rangle$.

If by scission of a molecule of degree of polymerization n_{x} it is desired to form a molecule of degree of polymerization $n_{1}<n_{i}$ and simultaneously a molecule of desree of polymerization n_{2} from the range $\left\langle n_{i}, 2 n_{i}\right.$, then n_{x} must be from the range $\left.2 n_{i}, 3 n_{i}\right\rangle$, etc. By this procecure the whole range of vaiues n_{x} disintegrates ior a given r_{i} irom the point of view of Case 2 into a number of subranges whose limits are formed by the whole even multiples of degree of polymerization n_{i}, i.e., the values k_{i} and $k=1,2, \ldots$

For $k>2$ it holds that the probability of scission of a molecule of degree of polymerization n_{x} from the range $\left.(k-1) n_{i}, k n_{i}\right\rangle$, with the simultanoous formation of a molecule of degree of polymerization $n_{1}<n_{i}$ and a molecule of degree of polymerization n_{2} from the range $\left(k-2 n_{i},(k-1) n_{i}\right.$, is equal to

$$
p_{k}=2\left(\mathrm{~km}_{\mathrm{i}}-n_{\mathrm{x}}\right) n_{\mathrm{x}}
$$

Nass transfers resulting from Case 2 are, therefore, fairly complicated.

Case 3

The result in this case is an increase of the total number of molecules larger than r_{i}. This can only happen when $n_{x}>2 n_{i}$.

The probability of formation of two molecules of degree of polymerization higher than n_{i} by random scission of a molecule of degree of polymerization $n_{X}>2 n_{i}$ is

$$
p_{4}=\left(n_{x}-2 n_{i}\right) \cdot n_{x}
$$

The probability that a molecule of degree of polymerization $n_{x}>2 n_{i}$ will be randomly selected, and by random scission two molecules formed of degree of polymerization higher than n_{i}, is the sum $p_{i} p_{4}$ from $2 n_{i}$ to $n_{i m a x}$, so that for a change of the number of molecules of degree oi polymerization hisher than n_{i} as a result of Case 3 we can write
where K is a constant from Eq. (3).
As a result of Case 3 there are again complicated mass transfers in the region above n_{i}.

Two molecules irom the rance $\left\langle n_{i}, 2 n_{i}\right\rangle$ can be formed by scission of a molecule of degree of polymerization n_{x} as cer Case 3 only when n_{x} is from the range $\left\langle 2 n_{i}, 4 n_{i}\right\rangle$, etc. Two molecules of a degree of polymerization from the range $\left\{2^{a-2} n_{i}, 2^{a-1} n_{i}\right)$ can, therefore, be formed only when n_{x} is from the range $\left\langle 2^{a-1} n_{i}, 2^{a} n_{i}\right\rangle$, while $a=2,3, \ldots$ The probability that by scission of a molecule of degree of polymerization n_{x} from the range $\left(2^{a-1} n_{i}, 2^{a} n_{i}\right\rangle$, two molecules will simultaneously be formed of degree of colymerization from the range $\left(2^{a-2} n_{i}, 2^{a-1} n_{i}\right.$; is equal to

$$
p_{a 2}=\left(n_{x}-2^{\left.a-1_{n_{i}}\right) \cdot n_{x}}\right.
$$

One molecule of degree of polymerization from the range $\left\{\mathrm{n}_{\mathrm{i}}, 2 \mathrm{n}_{\mathrm{i}}\right.$) can be formed by scission of a molecule of polymerization degree n_{x} as per Case 3 only when $n_{x}>4 n_{i}$, so that one molecule of degree of polymerization from the range $\left.: 2^{a-2} n_{1}, 2^{a-1} n_{i}\right\rangle$ can only be formed
when $n_{x}>2^{2} n_{i}$. The probability that br random scission of one molecule of degree of polymerization $n_{x}>2^{2} n_{i}$. one molecule will $b \in$ formed from the range $\left\{2^{a-2} \Gamma_{i}, 2^{a-1} n_{i}\right\rangle$ is equal to

$$
p_{a 1}=2^{a-1} n_{i^{\prime}} n_{x}
$$

Simultaneous Course o: Cases 1 to 3

Case 2 does not influence the number of molecules of degree of polymerization higher than n_{i}. The change in the number of molecules higher than n_{i} is given, therefore, by the summation of the right-hand sides of Eqs. (16) and (17):

where K is a constant from Eq. (3).
The determination of the dependence of $\sum_{n_{x}=n_{i}}^{n_{i} m a x} n_{x}$ on time in the simultaneous course of Cases 1 to 3 is difficult. In order to solve Eq. (18) we shall assume the depencence in the form $\Sigma N_{x} n_{x}=C_{x} \exp (\lambda t)$. By solving Eq. (18) we obtain

$$
\begin{equation*}
\sum_{n_{x}=n_{i}}^{n_{i} \max }=\frac{K}{2 K n_{i}-\lambda} \sum_{n_{x}=n_{i}}^{n_{i} \max _{x}}-C \exp \left(-2 K n_{i} t\right) \tag{19}
\end{equation*}
$$

where λ, C, and K are constants. Substituting const $=K_{i}\left(2 \mathrm{Kn}_{i}-\lambda\right)$, the equation becomes

Comparison with Results Obtained by the Monte Carlo Method

Since Case 3 can only take place on the condition that $n_{x}>2 n_{i}$,
it is possible to eliminate the incidence of Case 3 by a suitable choice of n_{i}. Cases 1 and 2 cannot be separated. The incidence of Case 2 is, however, largely limited to the highest degrees of polymerization in a given distribution.

For our model the starting distribution contained degrees of polymerization from the range (500,3700). The range n_{i}, for which no $n_{x}>2 n_{i}$ exists, is therefore, for the distribution under scrutiny, the range $n_{i}>1850$.

For testing purposes we chose three different values of n_{i}.

1. $n_{i}=3000$. For the simulated course the region of highest degree of polymerization where the scission occurs mostly according to Case 1.
2. $n_{i}=2000$. Cases 1 and 2 occur, but not Case 3.
3. $n_{i}=500$. Cases 1,2 , and 3 occur simultaneously.

In Figs. 7 and 8 the course for the depencence of $\mathrm{EN}_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}$ on time as obtained by the Monte Carlo method is plotted on a logarithmic scale. It shows that the application of the assumption $\mathrm{IN}_{\mathrm{x}} \mathrm{n}^{\prime} \mathrm{s}=$ $C_{x} \exp (\lambda t)$, which we used in the integration of Eq. (13), is correct because the dependence on time in the logarithmic scale is linear.

As long as Eq. (13) describes the real dependence of $E N_{X}$ on time, Eq. (19) should also be valid, since the assumption $\sum_{X} N_{x}=$ $C_{X} \exp (\lambda t)$ holds good.

The :ight-hand side of Eq. (19) has two terms. We shall inst attempt to plor the values of SN_{X}, obtained by the Monte Carlo method, against the values of $\sum_{N^{n}} x^{n}$. These dependencies are

FIG. 7. Depencence $\sum^{3700} N_{x^{n}}$ on the number of calculation cycles. $n_{x}=3000$
sraphed in Figs. 9 to 11. The dependence in Fig. 9 is quite linear, the dispersion of points in Fig. 10 slightly greater, while the dependence in Fig. 11 is at first sight more complicated than the foregoing dependencies.

It follows from Figs. 9 and 10 that in the region where $n_{x}>2 n_{i}$ does not exist, the influence of $C \exp \left(-2 \mathrm{Kr}_{i} \mathrm{t}\right)$ in Eq. (19) is very small (i.e., C is near zerol for the simulated case so that the course in this simulated case can be expressed with a fair accuracy by

$$
\begin{equation*}
\sum_{n_{x}=n_{i}}^{n_{i} N_{x}}=\operatorname{const}_{n_{x}=n_{i}}^{n_{x}} N_{x} \tag{20}
\end{equation*}
$$

where the constant of proportionality is $K_{,}\left(2 \mathrm{Kn}_{\mathrm{i}}+\lambda\right)$.

The value of the proportionality constant in Eq. (20), deduced from Fig. 9, is 3.085×10^{-4}; that from Fig. 10 is 4.025×10^{-4}.

Since const $=K_{(}\left(2 \mathrm{~K}_{\mathrm{i}}-\lambda\right)$, then $\lambda=K\left(1\right.$, const $\left.-2 n_{i}\right)$. As noted berore, the dependence of EN_{X} on $E N_{X} n_{x}$ for the simulated case is linear in the range $n_{x}>2 n_{i}$, hence

$$
\text { 1, const } \doteq\left(N_{x} n_{x} \leq N_{x}\right)_{0}=\vec{n}_{n i o}
$$

Then

$$
\begin{equation*}
\left.\lambda \doteq \operatorname{Kin}_{\mathrm{nio}}-2 n_{\mathrm{i}}\right) \tag{21}
\end{equation*}
$$

which makes it possible to obtain the value λ for the simulated case in a given area. The dependence of values of λ on n_{i} is plotted zor

FIG. 9. Depencience of values $\sum_{n_{x}=3000}^{3700} N_{x}$ on values $\sum_{n_{x}=3000}^{3700} N_{x} n_{x}$
this simulated case in Fig. 12. As it is apparent from the figure, we can express this dependence for the model case by a linear equation

$$
\begin{equation*}
\therefore=k_{\lambda} n_{i}+q_{\lambda} \tag{22}
\end{equation*}
$$

There k_{λ} and q_{λ} are constants. Aiter evaluation of the constants we obtair for the simulated case

$$
\begin{equation*}
\lambda=-\left(4.7 \times 10^{-9} \mathrm{r}_{i}\right)+\left(4 \times 10^{-5}\right) \tag{23}
\end{equation*}
$$

Since for the simulated case Eq. (21) is valid, it must also hold that

$$
\bar{n}_{n i o}=k_{n} n_{i}+q_{n}
$$

where i_{n} and q_{n} are constants.

FIG. 10. Dependence of values $\sum_{n_{x}=2000}^{3700} N_{x}$ on values $\sum_{n_{x}=2000}^{3700} N_{x}$

Substituring Eq. (24) into Eq. (21) and comparing with Eq. (22), we cbrain

$$
\begin{aligned}
& k_{n}=k_{\lambda} K-2 \\
& q_{n}=q_{\lambda} K
\end{aligned}
$$

Thus by substituting values from Eq. (23) we ootain for the simulated case $\mathrm{A}_{\mathrm{n}}=0.712$ and $\mathrm{G}_{\mathrm{n}}=1096$.

The dependence of $\bar{n}_{\text {nio }}$ on n_{i} is plotted in Fig. 13. We note in this igure that the depencence for the simulated case is really linear. The ralues oi constants deduced from Fig. 13 are $\mathrm{K}_{\mathrm{n}}=0.72$

FIG. 11. Dependence of values $\sum_{n_{x}=500}^{3700} N_{x}$ on values $\sum_{n_{x}=500}^{3700} N_{x} n_{x}$

FIG. 12. Dependence of values of constant λ on polymerization degree n_{i}.

FIG. 13. Dependence of the number-average polymerization degree of molecules bigger than n_{i} (indicated by $\bar{n}_{\text {nio }}$) on polymerization degree n_{i}.
and $q_{n}=1060$, which is in good agreement with the values obtained by Eq. (23).

Since the dependence of $\vec{n}_{\text {nio }}$ on n_{i} is siven by the shape of the distribution curve, so also is the validity of Eq. (24) and, consequently, of Eq. (22) imited to some special cases, e.g., to the simulated case.

On the basis oi only one simulated case it is difficult to decide the range in which Eq. (20 is valid for any arbitrary distribution. i.e., whether the value oi the constant C in Eq. (19) depends solely on the occurrence of Case 3 or whether it depends also on the corm of the discribution curve.

Let us go now to Fig. 11. The dependence of ΣN_{x} on $E N_{x}{ }_{x}$ is more complicated ior $n_{i}=500$ than the dependence in $F i$ ss. 9 and 10 .

In Eq. 19) we sinall theraiore also investigate the iniluence of C expl-2K $n_{i} t$. For the simulated case the dependence of $\Sigma_{x} N_{x}$ $\Sigma N_{x} n_{x}$ and on time for $n_{i}=500$ is expressed by Eq. (19) which, after evaluation of the constants, has the form

$$
\begin{equation*}
\sum_{n_{x}=500}^{3700} N_{x}=1.344 \times 10^{-3} \sum_{n_{x}=500}^{3700} N_{x} n_{x}-1.64 \times 10^{4} \exp \left(-3.549 \times 10^{-5} t\right) \tag{25}
\end{equation*}
$$

Equation (25) expresses the dependence of ΣN_{x} on $\Sigma N_{x} n_{x}$ and on time With an accuracy greater than $=1 \%$ as compared with values obtained by the Monte Carlo method for $n_{i}=500$.

For the tested course both the assumption $\Sigma N_{X} n_{x}=C_{x} \exp (\lambda t)$ and Eq. (19) in the whole range of degrees of polymerization are valid. Also valid is Eq. (18), whose validity we endeavored to test. It will also be necessary to test the validity of Eqs. (18) and (19) for other shapes of distribution curves and with other numbers of molecules present in the system.

Since $I N_{x} n_{x}=C_{x} \exp (\lambda t)$ holds good and so does Eq. (19), we can adjust Eq. (19) and use the relation $I N_{x} n_{x}=C_{x} \exp (\lambda t)$ to obtain

$$
\begin{equation*}
\frac{1}{\overline{\bar{n}_{\text {nio }}}}-\frac{1}{\overline{\bar{n}}_{\text {rit }}}=\frac{C}{C_{x}}\left\{1-\exp \left[-\left(2 K \Omega_{i}-\lambda i t\right]\right\}\right. \tag{26}
\end{equation*}
$$

After fusther adjustment of Eq. (26) we obtain

$$
\begin{equation*}
\bar{n}_{n i t}=\bar{n}_{n i o}\left[1-C_{1}\left(1-e^{C_{2} t}\right)\right] \tag{27}
\end{equation*}
$$

where $C_{:}=\bar{n}_{n i 0} C_{i} C_{X}$ and $C_{2}=-\left(2 K n_{i}+\lambda\right)$. Equation (27) describes the dependence of a number-average degree of polymerization of molecules with a degree of polymerization higher than the arbitrarily chosen value n_{i} on time as long as Eq. (19) and the relation $\sum N_{X} n_{x}=C_{x}$ expinti is valid.

Because a region can exist where $C \doteq 0$ anc. consequently, also $C_{1} \doteq 0$ (for the simulated case the resion $n_{i} \geq 2000$, there can also exist a Fegion of higher molecular weights, for which the numberaverage degree of polymerization is constant irrespective of degradation time by random chain scission.

Dependence of the $N u m b e r$ of Moiecules N_{i} of
Polymerization Degree ${ }^{\text {Pi }}$ on Degradation Time

In the foregoing section we did not deal with the case wheren or $n_{2}=n_{i}$. This case is, nevertheless, important for expressing the dependence of the number of molecules of degree of polymerization n_{i} on time.

In Ref. 1 we deduced the dependence of the number of molecules of degree of polymerization n_{i} on time in the form of Eq. (1) as

$$
\begin{equation*}
d N_{i^{\prime}} d t=-k^{\prime} v p_{i} \tag{1}
\end{equation*}
$$

where k^{\prime} is a constant and v is the velocity of the elementary steps. For random chain scission there exists no region in which the starting distribution of molecular masses is sufficiently narrow. Equation (2) then holds good exactly only for the highest degree of polymerization. For all other degrees of polymerization we have to assume that the probability p_{i} in Eq. (1) is composed of the number p_{i-}, i.e., the probability that a molecule of degree of polymerization i_{i} will be randomly selected for scission, and the probability p_{i}, i.e., the probability that by random scission of some molecule larger than n_{i} a molecule of degree oi polymerization n_{i} will be formed. Hence Eq. 1) must be written for random chain scission as

$$
\begin{equation*}
d N_{i^{\prime}} d t=k^{\prime} v\left(p_{i_{-}}-p_{i_{-}}\right) \tag{28}
\end{equation*}
$$

The probability p_{i-}, i.e., the probability that a molecule of polymerizarion degree n_{i} will be randomiy selected for scission, is

$$
p_{i-}=N_{i} n_{i} / \Sigma N_{i} n_{i}
$$

The probability p_{i+}, i.e., the probability that by random scission of a randomly seiected molecule of desree of polymerization $n_{j}>n_{i}$ a molecuie will be formed of degree of polymerization n_{i}, is a probability composed of two parts:
i. The probability that for scission a moiecule of degree of polymerization n_{j} will be selected is equal to $p_{j}=N_{j} n_{j} / \Sigma N_{i} n_{i}$.
2. The probability that by rancom scission of a molecule of degree of polymerization $n_{j}>n_{i}$, a molecule of degree of polymerization n_{i} will be formed is equal to $p_{j i}=2, n_{j}$.

The probability $\mathrm{p}_{\mathrm{i}+}$ is then

$$
p_{i-}=\sum_{n_{j}=n_{i}+1}^{n_{i} \max _{j} p_{j i}}=2 \sum_{n_{j}=n_{i}-1}^{n_{i} \max } \sum_{j} N_{i} n_{i}
$$

Substitutirg into Eq. (28), we obrain

$$
d{\underset{i}{i}}^{d t}=k^{\prime} F\left(-N_{i} n_{i}+2 \sum_{n_{j}=n_{i}-1}^{n_{i}} N_{j}\right)
$$

where K is a constant from Eq. (3).
L order to integrate Eq. 29 we must substitute for SN_{j}. The number of molecules of degree of polymerization higher than the arbitrarily chosen value was dealt with in the foregoing section. It suffices then to express $E N_{\mathrm{x}}$ in Eq. (19) br means of assumption $S_{x} n_{x}=C_{x} \exp (\lambda t)$ as a function of time, to substitute into Eq. (29), and to adjust to obtain

$$
\begin{equation*}
d N_{i} / d t+C_{1} N_{i}=C_{2} \exp (\lambda t)-C_{3} \exp \left(-2 K n_{i} t\right) \tag{30}
\end{equation*}
$$

where

$$
\begin{aligned}
& C_{1}=k^{\prime} K_{i} \\
& C_{2}=2 k^{\prime} K^{2} C_{x^{\prime}} /\left(2 K Z_{i}+\lambda\right) \\
& C_{3}=2 k^{\prime} K C
\end{aligned}
$$

C is a constant from Eq. (19).
By solving Eq. (30) and adjusting, we obtain

$$
\begin{equation*}
N_{i}=\text { const }^{\prime} \sum_{n_{j}=n_{i}+1}^{n_{i} \max } n_{j}+C^{\prime} \exp \left(-2 K_{n_{i}} t\right) \tag{31}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { const' }=\frac{2 k^{\prime} K^{2}}{\left.\left(2 K n_{i}-\lambda\right) k^{\prime} K n_{i}-\lambda\right)} \\
& C^{\prime}=\frac{2 k^{\prime} C}{n_{i}\left(k^{\prime}-2\right)}
\end{aligned}
$$

As can be seen. Eq. (31) is in agreement, with the exception of the constant values, with Eq. (i9). It is necessary, however, to point out that both Ea. (19) and Eq. (31) were deduced on the assumption that $\sum N_{x} n_{x}=C_{x} \exp (\lambda t)$, which is valid for the simulated case but whose general validity has not been proved.

Comparison with Relations Published Thus Far
Simha [7], Tobolsky [8], and Conley [9] have, in their equations for the change in the number oi molecules of a given degree oi
polymerization in relation to time. only one constant k instead of two constants (k^{\prime}, K) introduced in Eq. (29), and instead of n_{i} they have $n_{i}-1$ so that their equations, expressed by the symbols used in this paper, have the form

$$
d N_{i^{\prime}} d t=k\left[-\left(n_{i}-1\right) N_{i}+2 \sum_{n_{j}=n_{i}+1}^{n_{i} N_{j}}\right]
$$

The difference from our Eq. (29) is thus insignificant.
Saito [10] published an integro-differential equation which, after transcription to the symbols used in this paper and after replacing the integral by summation, has the form:

$$
d N_{i^{\prime}} d t=-N_{i} n_{i}+2 \sum_{r_{j}=n_{i}+1}^{n_{i} \max }
$$

Compared to our Eq. (29), it assumes a value for constant k ' K of 1.

Comparison with Results Obtained by the Monte Carlo Method

Estimation of Value of Constant k' in Eq. (1). As already noted, Eq. (2) is valid for random chain scission only for the highest degree of polymerization in a given distribution. The highest degree of polymerization in this simulated case is $n_{i}=3700: N_{3: 00}$ is, however, too small for this case less than 100). For the dependence of $\mathrm{N}_{3} 700$ on time, one can expect a considerable dispersion of points.

Equation (2) should, however, be approximately valid even for a wider region of the highest degree of polymerization. The region of the highest degree of polymerization ior this simulated case is $n_{i} \geq 3000$. We can thus transcribe Eq. (2) into the form

$$
\begin{equation*}
\ln \left(\sum_{n_{i}=3000}^{3700} N_{i o} / \sum_{n_{i}=3000}^{3700} N_{i}\right)=\operatorname{lrm} n_{i} t \tag{32}
\end{equation*}
$$

Plotting the depencence on a logaritimic scale derived irom the first part of the dependencies in Fig. 14, the value oi $k m_{i}=1.184 \times 10^{-t}$. Substituting for n_{i} a usual arithmetical mean, i.e., the value 3350 , we obtain $k v=3.53 \times 10^{-3}$. Since $k=k^{\prime} K$, where k^{2} is a constant in Eq. (1) and K a constant in Eq. (3), and since the value of constant K in Eq. (3) as deduced ior the simulated case in Fig. 2 is $K \doteq 3.65 \times 10^{-3}$, it is possible to estimate that the value of the constant k^{\prime} for random chain scission is equal to 1 , which is in agreement with the assumption that one computed cycle means the selection and scission of one molecule.

FIG. 14. Dependence of $\ln \left(\sum_{n_{i}=3000}^{3700} N_{i o} / \sum_{n_{i}=3000}^{3700} N_{i}\right)$ on the number
cycles.

It can be further noted in Fig. 14 that in the region of the highest molecular weights, the dependence of N_{i} on time is really approxmately expressed by Eq. (2). Further, there is noticeabie break in the dependence on time which we have already observed in time dependence of $\operatorname{IN} \mathrm{N}_{\mathrm{n}} \mathrm{x}$ in Figs. 7 and 3 .

Estimation of the Values of Constants in Eq. (31). Constanc C^{\prime} in Eq. (Si) is equai, as pointed out already, to

$$
C^{\prime}=\frac{2 k \cdot}{n_{i}\left(k^{\prime}-2\right)}
$$

Since $k^{\prime}=1$,

$$
C^{\prime}=-2 C n_{i}
$$

where C is a constant from Eq. (19). For the model case it was found in the preceding section that the value of constant C is usually near 0 , so that $C \exp \left(-2 \mathrm{Kn}_{i} t\right)$ in Eq. (19) can, in a wider region, be neglected. Only for a region of lower degree of polymerization is C great enough to make the iniluence of $C \exp \left(-2 k n_{i} t\right)$ in Eq. (19) ncticeable.

We see now that $C^{\prime}=-2 C, n_{i}$, while the value n_{i} is of the order of 10^{3}. It will most likely be possible to neglect the influence of $C^{\prime} \exp \left(-2 K_{r_{i}} \mathrm{t}\right)$ in the whole region of the degrees of polymerization of the simulated case.

Constant const' in Eq. (31) is equal to

$$
\text { const }{ }^{\prime}=\frac{2 \mathrm{~h}^{\prime} \mathrm{K}^{2}}{\left(2 K n_{\mathrm{i}}-\lambda\right)\left(k^{\prime} K n_{\mathrm{i}}-\lambda\right)}
$$

Since $k^{\prime}=1$,

$$
\text { const }{ }^{\prime}=\frac{2 \mathrm{~K}^{2}}{\left(2 \mathrm{~K} n_{\mathrm{i}}-\lambda\right)\left(\mathrm{Kn}_{\mathrm{i}}+\lambda\right)}
$$

anc it may thus be expected that the value of the constant const' in Eq. (31) will greatly depend on the value λ in the relation $\mathrm{EN}_{\mathrm{j}} \mathrm{n}_{\mathrm{j}}=\mathrm{C}_{\mathrm{x}} \exp (\lambda \mathrm{t})$. In Fiss. 7 and 8 it is apparent that both the value of $C_{:}$and the value of λ are not constant in the whole interral of times tested. but that they change, mostiy discontinuousiy.

It is therefore to be expected that there will be discontinuous changes in the values of the constant const' also.

Verification of the Estimate of Values of Constant C^{\prime} and Constant. Since for the simulated case we used a distribution in a tabular form, where the values of polymerization degree n_{i} were changing by $\Delta n_{i}=30$, Eq. (31) can have the form

$$
\begin{equation*}
N_{i}=\operatorname{const} t_{n_{j}}^{n_{i} \sum_{i} \max } \sum_{j} n_{j}-C^{\prime} \exp \left(-2 K n_{i} t\right) \tag{3}
\end{equation*}
$$

1. As far as $C^{\prime} \exp \left(-2 K n_{i} t\right)$ in Eq. (33) can be neglected, the dependence of N_{i} on $E N_{j} n_{j}$ must be Linear.
2. As far as const' is strongly dependent on λ, we may expect sudden changes in the dependence of H_{i} on $\Sigma \mathrm{N}_{j} \mathrm{n}_{\mathrm{j}}$.

In order to verify 1 and 2 , we shall choose one example from each region as we did in the preceding section. We shall again assume the lowest values for $n_{j}: A, n_{j}=3000 ; B, n_{j}=2000$; and $C, n_{j}=500$. We shall examine the ralues: $A, N_{2950} ; B, N_{1950} ;$ and C. N450.

If we plot the values found by the Monte Carlo method for $\mathrm{N}_{\text {: }}$ against the values of $E N_{j} n_{j}$ (see Figs. 15 through 17), we see that both Assumptions 1 and 2 for constants C^{\prime} and const' are filiilled. Since Assumptions 1 and 2 are fulfilled, we can transcribe Eq. (33) to

$$
v_{i}=\text { const' } \sum_{n_{j}=n_{i}-j 0}^{n_{i} \max } N_{j} n_{j}=\operatorname{const}^{\prime} C_{x}^{\prime} \exp \left(\lambda^{\prime} t\right)
$$

and, zurther adjustment,

FIG. 15. Dependence of N_{2950} on $\sum_{n_{j}=3000}^{3700} N_{j} n_{j}$.

$$
\begin{equation*}
\ln \left(\tilde{N}_{i} \dot{n}_{i}\right)=\lambda \cdot t-C^{+} \tag{34}
\end{equation*}
$$

where $\mathrm{C}^{-}=\operatorname{In}$ (const' $C_{x}^{\prime} n_{i}$.
The Deperdence of N_{i} on Time. It was shown [2] that it is convenient to plot the values of $N_{i} n_{i}\left(N_{i} n_{i}\right.$ is directly related to the weight fraction of a polymer of degree of polymerization n_{i}. The dependence of $\ln \left(N_{i} n_{i}\right)$ on time could then be expressed for a random chain scission by Eq. (34), while we can expect that the values of both C^{-}and X^{\prime} will change in some regions.

The dependence of $\ln \left(N_{i} n_{i}\right)$ on time for the simulated case is plotted in Figs. 18 and 19. Figure 18 shows the dependence for a

degree of polymerization in the range from 250 to 750 ; Fig. 19 shows the same dependence fir a degree of polymerization irom 1000 to 3100. It is apparent in these figures that there exist regions in which the dependence of $\ln N_{i} \mathrm{~N}_{\mathrm{i}}$) on the number of cycles is linear, as well as regions where both C^{+}and I^{\prime} change their values. From these figures it can be further noted that changes of C^{-}and λ^{\prime} for the same degree of polymerization n_{i} can occur several times during degradation.

In Figs. 20 and 21 there are only regions for which the dependence of $I n\left(N_{i} n_{i}\right)$ on time is linear. From these linear regions we can determine che values of the constant λ^{\prime}.

All values of the constant ${ }^{\prime}$ determined trom Figs. 20 and 21 for the simulated case are plotted on n_{i} in Fig. 22. It is apparent from Fig. 22 that the values of λ ' in this simulated case can be joined by lines indicated by numbers 1 to 0°. so that the dependence of λ^{\prime} on the degree of polymerization probaily ias the form

$$
\lambda^{\prime}=k_{i}^{\prime} n_{i}-q_{i}^{\prime}
$$

FIG. 17. Depencence of N_{450} on $\sum_{n_{j}=500}^{3700} N_{j} n_{j}$.

FIG. 18. Dependence of $\ln \left(N_{i} n_{i}\right)$ on the number of calculation cycles.

FIG. 19. Dependence of $\ln N_{i} n_{i}$) on the number of calcuiation cycles.

FIG. 20. Dependence of $\operatorname{LnM}_{i} n_{i}$) on the number oi calculation cycles.

The values of k_{λ}^{\prime} and q_{λ}^{\prime} for all six lines in Fig. 22 are given in Table 1.

The values of the quotients resulting from dividing k_{λ} and q_{λ}^{\prime}

FIG. 21. Dependence of $\ln \left(\mathrm{N}_{i} \mathrm{n}_{\mathrm{i}}\right)$ on the number of calculation cycles.

FIG. 22. Dependence of vaiues of constant λ on polymerization degree n_{i}.

TABLE 1. Values of k_{λ}^{\prime} and q_{λ}^{\prime} for the Mocel Case

Number	$k_{\lambda}^{\prime} \times 10^{\mathrm{a}}$	$\mathrm{q}_{\lambda}^{\prime} \times 10^{5}$	$\mathrm{k}_{\lambda}^{\prime} \mathrm{k}_{\lambda}$	$\mathrm{q}_{\lambda}^{\prime} \mathrm{q}_{\lambda}$
1	-15.5	37.1	3.3	9.3
2	-11.6	20.4	2.5	5.1
3	-9.1	12.9	1.9	3.2
4	-9.1	11.1	1.9	2.3
5	-5.7	6.0	1.2	1.5
6	-6.1	4.9	1.3	1.2

by the values of h_{λ} and q_{λ} from Eq. (23) shows that we cannot exclucie the values of λ ' in Eq. (34), for they are in some way "quantized" as a result of the inal number of molecules in the system.

CONCLUSION

A detailed srudy oi the course oi random chain scission simulated by the Monte Carlo method has shown some hitherto unknown characteristics of the whole process and has made it possiole to test the validity oi some equations.

REFERENCES

[7] R. Simha. J. Apol. Phys., 12. 569 (1941).
[8] A. V. Tobolsky, J. Polym. Sci., 26, 247 (1957)
© P. T. Conley, Thermal Stability of Polymers. Deker, New York, 1970 p. 9 .
[10] O. Saito. J. Phys. Soc. Japan, 13, 198 (1958).

Accepted by editor October 30, 1972
Received for publication November 13, 1972

